2NO2 <---> N2O4
As we placed a test tube in the boiling water, it turned dark brown while test tubes in the ice turned to almost a colorless gas. The forward process was favored in the ice bath while the reverse reaction was favored in the hot bath. Therefore, there was a higher concentration of NO2 in the test tubes in the boiling water while there was a higher concentration of N2O4 in the ice.
As we "explored," we placed test tubes back and forth from the boiling water to the ice bath. We observed the gas in the test tubes change with temperature. As we placed a tube from the ice into the boiling water, the gas began to turn a dark brown. We learned that the rate stays the same through out the reaction; however, we did shift the rate using change in temperature. As temperature changed, the reaction increased rate of formation of either NO2 or N2O4, based on the required activation energy. Since the forward reaction was induced with heat, we can conclude that the activation for this endothermic process is greater than that of the reverse reaction.
The test tube at room temperature has a constant rate of the reaction in equilibrium. Concentrations of NO2 and N2O4 are kept at a steady and ongoing rate (ratio is 2:1 moles).
No comments:
Post a Comment